Infinitely many geometrically distinct solutions for periodic Schrödinger–Poisson systems
نویسندگان
چکیده
منابع مشابه
Infinitely Many Periodic Solutions of Nonlinear Wave Equations on S
The existence of time periodic solutions of nonlinear wave equations utt −∆nu + ` n− 1 2 ́2 u = g(u)− f(t, x) on n-dimensional spheres is considered. The corresponding functional of the equation is studied by the convexity in suitable subspaces, minimax arguments for almost symmetric functional, comparison principles and Morse theory. The existence of infinitely many time periodic solutions is o...
متن کاملInfinitely Many Periodic Solutions for Nonautonomous Sublinear Second-Order Hamiltonian Systems
and Applied Analysis 3 Our main result is the following theorem. Theorem 1.1. Suppose that F t, x satisfies assumptions (A) and 1.7 . Assume that lim sup r→ ∞ inf x∈RN,|x| r |x|−2α ∫T 0 F t, x dt ∞, 1.8 lim inf R→ ∞ sup x∈RN,|x| R |x|−2α ∫T 0 F t, x dt −∞. 1.9
متن کاملInfinitely many periodic solutions for some second-order differential systems with p(t)-Laplacian
* Correspondence: [email protected] School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, P. R. China Abstract In this article, we investigate the existence of infinitely many periodic solutions for some nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained using critical point theory. 2...
متن کاملExistence of Infinitely Many Periodic Solutions for Second-order Nonautonomous Hamiltonian Systems
By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2019
ISSN: 1687-2770
DOI: 10.1186/s13661-019-1177-1